How to estimate beta-interferon treatment effectiveness in MS using some fancy modelling

Ehsan Karim
Department of Statistics, UBC

Pharmacoepidemiology in MS Research Group (PiMS),
Brain Research Centre conference centre,
UBC Hospital, Vancouver

20 September, 2011
1. Why modelling
2. Why fancy modelling
3. A rough sketch
4. Take home message
Why modelling > Objective

- **Outcome**: Reaching a milestone in disability progression (time to sustained EDSS 6)
- **Treatment**: Use of β-interferons (3 kinds)
- **Objective**: Treatments have any long-term beneficial effect?

Randomized controlled trial or observational study?
Why modelling > Treatment Effect

Treated patient

Untreated patient

Study entry

Follow-up in years

Treatment Effect from ideal situation
Why modelling > Treatment Effect

Treatment Effect from ideal situation: KM / Cox PH model?
Why modelling > Less than ideal situation

Baseline covariates: Gender, Age, Disease duration
Time-varying covariates: Relapse, EDSS scores
Why modelling > Observational data

Patients are selected with similar eligibility criteria.
Why modelling > Standard analysis tool

Time-dependent (treatment) Cox Model:

$$\lambda_{Ta}(t|V) = \lambda_0 \times \exp(\beta_1a(t) + \beta_2V + \beta_3L)$$

Hazard at baseline Hazard at time t Treatment
Baseline covariates more covariates?

(1) Gender, (4) Relapse,
(2) Age, (5) EDSS score
(3) Disease duration
Why modelling > Why time dependent covariate
Why modelling > Why time dependent covariate

[Coles, 2009]
Why modelling > Why time dependent covariate

Impact of a relapse on the hazard of reaching EDSS 6 at different time points

<table>
<thead>
<tr>
<th>Follow-up (i.e., disease duration from onset of MS)</th>
<th>Risk if relapse occurred</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 years</td>
<td>Within 5 years from MS onset</td>
</tr>
<tr>
<td>>5-10 years</td>
<td>>5-10 years from MS onset</td>
</tr>
<tr>
<td>>10 years</td>
<td>>10 years from MS onset</td>
</tr>
</tbody>
</table>

% Change in the hazard of reaching EDSS 6 (95% CI)

[Tremlett et al., 2009]
Time-dependent Cox Proportional Hazards Model:

$\lambda_{T_a}(t|V) = \lambda_0 \times \exp(\beta_1 a(t) + \beta_2 V + \beta_3 L(t))$

- Hazard at baseline
- Treatment at time t
- Baseline covariates
- Time-dependent covariates

(1) Gender, (2) Age, (3) Disease duration
(1) Relapse, (2) EDSS score
Why fancy modelling > Causal Graphs

Common Cause

\[\mathcal{E} \rightarrow C \rightarrow \mathcal{D} \]

Mediator

\[\mathcal{E} \rightarrow C \rightarrow \mathcal{D} \]

Cases itself

\[\mathcal{E} \rightarrow C \rightarrow \mathcal{D} \]

Collider

\[\mathcal{E} \rightarrow C \rightarrow \mathcal{D} \]
Relapse is both \textbf{confounder} and \textbf{mediator} variable.

Need to adjust for confounder, but adjusting for a mediator variable will \textbf{over-adjust/block causal path} [Hernán et al., 2004].
A rough sketch

Treatment Selection Model: \[A(j) \sim \bar{A}(j - 1), V, \bar{L}(j) \]

Weight Model:

\[
SW(t) = \prod_{j=1}^{t} \frac{Pr(A(j) | \bar{A}(j - 1), V)}{Pr(A(j) | \bar{A}(j - 1), V, \bar{L}(j))}
\]
MSM Cox:
\[\lambda_{T_a}(t|V) = \lambda_0 \times \exp(\beta_1 a(t) + \beta_2 V) \]

<table>
<thead>
<tr>
<th>Hazard at baseline</th>
<th>Hazard at time t</th>
<th>Treatment Baseline covariates</th>
</tr>
</thead>
</table>

(1) Gender, (2) Age, (3) Disease duration

with weights \(SW(t) \) (adjusting for time-dependent covariates) [Robins, 1999; Hernán et al., 2000; Robins et al., 2000].

Still need to check the assumptions behind this model.
Need to be very cautious while
• analyzing and
• interpreting results
from **observational** data,
especially while dealing with **time-dependent** variables.

Thank You!

Contact e-mail: ehsan@stat.ubc.ca