How to estimate beta-interferon treatment effectiveness in MS using some fancy modelling

Ehsan Karim Department of Statistics, UBC

Pharmacoepidemiology in MS Research Group (PiMS), Brain Research Centre conference centre, UBC Hospital, Vancouver

20 September, 2011

vvny modelling Observation

data Standard too

A rough

Take home

Outline

Why nodelling Observational data Standard tool

A rough

sketch Take home

message

- Why modelling
- Why fancy modelling
- 3 A rough sketch
- Take home message

Why modelling > Objective

Why modelling

data Standard too

A rough

Take home message

Reference:

- **Outcome**: Reaching a milestone in disability progression (time to sustained EDSS 6)
- **Treatment**: Use of β -interferons (3 kinds)
- Objective: Treatments have any long-term beneficial effect?

Randomized controlled trial or observational study?

Why modelling > Treatment Effect

modelling

Treatment Effect from ideal situation

Why modelling > Treatment Effect

Why modelling

Observational data

Why fancy

modelling

Take hom

..----

Treatment Effect from ideal situation: KM / Cox PH model?

Why modelling > Less than ideal situation

Baseline covariates: Gender, Age, Disease duration **Time-varying covariates**: Relapse, EDSS scores

Why modelling > Observational data

wony modelling Observational data Standard tool

Why fancy modelling

modelling Δ rough

Take home

References

Patients are selected with similar eligibility criteria.

Why modelling > Standard analysis tool

modelling
Observational
data
Standard tool

Why far modellir

A rough

Take home

References

Time-dependent (treatment) Cox Model:

$\lambda_{T_{\bar{a}}}(t V) =$	$\lambda_0 \times$	$\exp(\beta_1 a(t) +$	$\beta_2 V +$	$eta_3 L ig)$
Hazard	Hazard at baseline	Treatment at time t	Baseline covariates	more covariates?
			(1)Gender, (2)Age, (3)Disease duration	(4)Relapse, (5)EDSS score

Why modelling > Why time dependent covariate

Standard tool

Why modelling > Why time dependent covariate

Why modelling Observational data Standard tool

Why fancy modelling

Sketch

nessage

[Coles, 2009]

Why modelling > Why time dependent covariate

Impact of a relapse on the hazard of reaching EDSS 6 at different time points

Standard tool

Follow-up (i.e., disease duration from onset of MS)

[Tremlett et al., 2009]

Why modelling > Extended Cox-model?

modelling Observationa data

Standard tool

modellin

A rough

Take home

D . C

Time-dependent Cox Proportional Hazards Model:

$\lambda_{T_{\bar{a}}}(t V) =$	$\lambda_0 \times$	$\exp(\beta_1 a(t) +$	$\beta_2 V +$	$eta_3 L(t) ig)$
Hazard	Hazard at baseline	Treatment at time t	Baseline covariates	Time-dependent covariates
			(1)Gender, (2)Age, (3)Disease duration	(1)Relapse, (2)EDSS score

Why fancy modelling > Causal Graphs

Why modelling Observations data

Why fancy modelling

A rough

Take home

Why fancy modelling > Over-Adjustment

modelling
Observational
data
Standard tool

Why fancy modelling A rough

sketch

- Relapse is both **confounder** and **mediator** variable.
- Need to adjust for confounder, but adjusting for a mediator variable will over-adjust/block causal path [Hernán et al., 2004].

A rough sketch >

Why modelling Observation

data Standard too

A rough

sketch

message

References

Treatment Selection Model: $A(j) \tilde{A}(j-1), V, \bar{L}(j)$

Weight Model:

$$SW(t) = \prod_{j=1}^{t} \frac{Pr(A(j)|\bar{A}(j-1), V)}{Pr(A(j)|\bar{A}(j-1), V, \bar{L}(j))}$$

A rough sketch >

Why nodelling Observational data Standard tool

A rough

Take hom

Reference

```
MSM Cox:
 \lambda_{T_{\bar{a}}}(t|V) =
                 \lambda_0 \times
                                \exp(\beta_1 a(t) + \beta_2 V)
    Hazard
                   Hazard
                                  Treatment
                                                  Baseline
                 at baseline
                                  at time t
                                                  covariates
                                                  (1)Gender,
                                                  (2)Age,
                                                  (3)Disease
                                                  duration
with weights SW(t) (adjusting for time-dependent covariates)
```

Still need to check the assumptions behind this model.

[Robins, 1999; Hernán et al., 2000; Robins et al., 2000].

Take home message >

modelling
Observationa

modellin A rough

sketch

Take home message

Reterence

Need to be very cautious while

- · analyzing and
- interpreting results

from observational data,

especially while dealing with time-dependent variables.

- Why modelling Observational data Standard tool
- A rough
- Take home message
- References

- A. Coles. Multiple sclerosis: The bare essentials. Neurology in practice, 9 (2):118–126, 2009.
- M.Á. Hernán, B. Brumback, and J.M. Robins. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. *Epidemiology*, 11(5):561, 2000. ISSN 1044-3983.
- M.Á. Hernán, S. Hernández-Díaz, and J.M. Robins. A structural approach to selection bias. *Epidemiology*, 15(5):615, 2004.
- J.M. Robins. Association, causation, and marginal structural models. *Synthese*, 121(1):151–179, 1999. ISSN 0039-7857.
- J.M. Robins, M.Á. Hernán, and B. Brumback. Marginal structural models and causal inference in epidemiology. *Epidemiology*, 11(5):550, 2000. ISSN 1044-3983.
- H. Tremlett, M. Yousefi, V. Devonshire, P. Rieckmann, and Y. Zhao. Impact of multiple sclerosis relapses on progression diminishes with time. *Neurology*, 73(20):1616–1623, 2009.

modelling
Observational
data
Standard tool

modelling

A rough sketch

Take home message

Reterences

Thank You!

Contact e-mail: ehsan@stat.ubc.ca