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Why modelling > Objective

Why
modelling

e Outcome: Reaching a milestone in disability progression
(time to sustained EDSS 6)

e Treatment: Use of -interferons (3 kinds)

e Objective: Treatments have any long-term beneficial
effect?

Randomized controlled trial or observational study?



Why modelling > Treatment Effect
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Why modelling > Treatment Effect

Why
modelling
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Study entry
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Treatment Effect from ideal situation: KM / Cox PH model?



Why modelling > Less than ideal situation
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Baseline covariates: Gender, Age, Disease duration
Time-varying covariates: Relapse, EDSS scores



Why modelling > Observational data

Observational
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Patients are selected with similar eligibility criteria.



Why modelling > Standard analysis tool

Time-dependent (treatment) Cox Model:

Standard tool /\Ta (tlv) — AO X exp (Bla(t)+ /32V+

Hazard Hazard Treatment Baseline
at baseline at time t covariates

(1)Gender,
(2)Age,
(3)Disease
duration

BsL)

more
covariates?

(4)Relapse,
(5)EDSS score



Why modelling > Why time dependent covariate

Relapsing Remitting MS

Disability —=

Time ————»



Why modelling > Why time dependent covariate

M Active drug
M Placebo

Standard tool

Annualised relapse rate
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[Coles, 2009]
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Why modelling > Why time dependent covariate

Impact of a relapse ort the hazard of reaching EDSS 6 at different time points

Risk if relapse occurred
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[Tremlett et al., 2009]
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Why modelling > Extended Cox-model?

Time-dependent Cox Proportional Hazards Model:

Standard tool Az, (t|V) _ Ao X exp (/6,161(1‘/)+ BoV 4 ﬂsL(t))
Hazard Hazard Treatment Baseline Time-dependent
at baseline at time t covariates covariates

(1)Gender, (1)Relapse,
(2)Age, (2)EDSS score
(3)Disease

duration
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Why fancy modelling > Causal Graphs

Common Cause Mediator
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Why fancy modelling > Over-Adjustment

Qutcome
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e Relapse is both confounder and mediator variable.

e Need to adjust for confounder, but adjusting for a
mediator variable will over-adjust/block causal path
[Herndn et al., 2004].
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A rough sketch >

Treatment Selection Model: A(j) ~ A(j —1),V, L(j)

Weight Model:

A rough
sketch
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A rough sketch >

MSM Cox:
A1, (V) = Ao X exp(fra(t)+  B2V)

Hazard Hazard Treatment  Baseline
at baseline at time t covariates

it (1)Gender,
(2)Age,
(3)Disease
duration

with weights ST/ () (adjusting for time-dependent covariates)

[Robins, 1999; Hernan et al., 2000; Robins et al., 2000].

Still need to check the assumptions behind this model.
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Take home message >

Need to be very cautious while
e analyzing and
e interpreting results

from observational data,

Take home
message

especially while dealing with time-dependent variables.

17/19



References

A. Coles. Multiple sclerosis: The bare essentials. Neurology in practice, 9
(2):118-126, 2009.

M.A. Hernan, B. Brumback, and J.M. Robins. Marginal structural models
to estimate the causal effect of zidovudine on the survival of
HIV-positive men. Epidemiology, 11(5):561, 2000. ISSN 1044-3983.

M.A. Hernén, S. Hernandez-Diaz, and J.M. Robins. A structural approach
to selection bias. Epidemiology, 15(5):615, 2004.

J.M. Robins. Association, causation, and marginal structural models.
Synthese, 121(1):151-179, 1999. ISSN 0039-7857.

References J.M. Robins, M.A. Hernan, and B. Brumback. Marginal structural models
and causal inference in epidemiology. Epidemiology, 11(5):550, 2000.
ISSN 1044-3983.

H. Tremlett, M. Yousefi, V. Devonshire, P. Rieckmann, and Y. Zhao.
Impact of multiple sclerosis relapses on progression diminishes with
time. Neurology, 73(20):1616-1623, 2009.



Thank You!

Contact e-mail: ehsan@stat.ubc.ca
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