Motivation
Problem Settings
Frequentist and Bayesian Approach for Adjustment
Simulation Setup and Results
Application to Epidemiologic Data
Summary

Adjusting for Exposure Misclassification in Bayesian Hypothesis Testing in Case-Control Studies

Ehsan, Karim and Paul Gustafson

Department of Statistics University of British Columbia

December 28, 2010

Outline

- Motivation
- Problem Settings
- Frequentist and Bayesian Approach for Adjustment
- Simulation Settings and Results
- Application to Epidemiologic Data
- Summary

Motivation > Origin of the Problem

 Goal is to find relationship between an disease outcome variable (Y) and the exposure (V)

Summary

- Precise quantification of exposure variable (V) is not possible due to various practical reasons
- ullet Cruder measurement used or surrogate variable (V^*) value collected
- In context of inference, this suffers several consequences

Motivation > Consequences in Inference

Measurement error in the exposure variable can have adverse effects

- on the power of a hypothesis test in detecting the impact of an exposure variable in the development of a disease.
- As it distorts the structure of data, more uncertainty is associated with the inferential procedure.

In the current work, we will try to find a way to adjust for misclassification error (discrete part) while applying hypothesis testing procedures.

Problem Setting > Basic Setup

- Retrospective case-control scenario.
- Correctly measured binary response

$$Y = \begin{cases} & \text{Diseased or} \\ & \text{Non-diseased,} \end{cases}$$

Binary exposure variable

$$V = \left\{ \begin{array}{l} \text{Truly Exposed or} \\ \text{Truly Unexposed,} \end{array} \right.$$

• Surrogate binary exposure variable

$$V^* = \begin{cases} \text{Apparently Exposed or} \\ \text{Apparently Unexposed,} \end{cases}$$

• Under non-differential misclassification (pattern of error $V^*|V,Y$ does not depend on Y).

Problem Setting > Adjustment Techniques

For the correction of measurement error, we go through the

Summary

- Replicated Measurement
- Validation study
 - the validated sub-sample is derived from the same population under investigation and
 - superior method of exposure assessment is implemented on each under the sub-sample.

Problem Setting > Main Part of the Data

	Main (unvalidated) part of the data				
Y	Y	= 1	Y=0		
V / V^*	$V^* = 1$	$V^* = 0$	$V^* = 1$	$V^* = 0$	
V=1	<i>u</i> ₁₁	<i>u</i> ₁₂	<i>u</i> ₀₁	<i>u</i> ₀₂	
<i>V</i> = 0	<i>u</i> ₁₃	<i>u</i> ₁₄	u ₀₃	<i>u</i> ₀₄	
Total	n ₁₅	n ₁₆	n ₀₅	n ₀₆	

We can calculate θ_0 and θ_1 (apparent exposure prevalence rates) from the whole data

Problem Setting > Validation Part of the Data

	Validation part of the data				
Y	Y :	= 1	Y=0		
V / V^*	$V^* = 1$	$V^* = 1 V^* = 0 $		$V^* = 0$	
V=1	n ₁₁	n ₁₂	n ₀₁	n ₀₂	
V=0	n ₁₃	n ₁₄	n ₀₃	n ₀₄	
Total	$n_{11} + n_{13}$	$n_{12} + n_{14}$	$n_{01} + n_{03}$	$n_{02} + n_{04}$	

We can calculate r_0 , r_1 (exposure prevalence rates), SN (sensitivity) and SP (specificity) from the whole data.

Problem Setting > Epidemiologic Example

Cervical Cancer and Herpes Simplex Virus Study

Table: Validation sub-study from HSV-2 study

Y	Cases ((Y=1)	Controls $(Y = 0)$	
Validated Part	$V^* = 1$	$V^* = 0$	$V^* = 1$	$V^* = 0$
V=1	18	5	16	16
V = 0	3	13	11	33
Unvalidated (main)	375	318	535	701
Total	396	336	562	750

Discarsing V, we can calculate θ_0 and θ_1 . Considering V, we can calculate r_0 , r_1 , SN and SP.

Convergence

Adjustment > Hypothesis Formation

1
$$\theta_i = P(V^* = 1 | Y = i)$$

$$\circ r_i = P(V = 1 | Y = i)$$

$$SN_i = P(V^* = 1 | V = 1, Y = i)$$

Adjustment > Hypothesis Formation

OR with Validation Data

$$\Psi = \frac{r_1/(1-r_1)}{r_0/(1-r_0)}$$

OR without Validation Data

$$\Psi^* = \frac{\theta_1/(1-\theta_1)}{\theta_0/(1-\theta_0)}$$

$$\theta_i = SNr_i + (1 - SP)(1 - r_i)$$

i.e., θ_i is a function of r_i ; $H_0: \theta_0 = \theta_1 \equiv H_0: r_0 = r_1$.

Adjustment > Frequentist Likelihoods

Without Validation Data

$$\begin{split} L(\theta_0,\theta_1|V^*,Y) & \propto \quad \theta_0^{(n_{01}+n_{03}+n_{05})} \times \left\{1-\theta_0\right\}^{(n_{02}+n_{04}+n_{06})} \times \\ & \quad \theta_1^{(n_{11}+n_{13}+n_{15})} \times \left\{1-\theta_1\right\}^{(n_{12}+n_{14}+n_{16})}. \\ & \hat{\theta}_0 & = \quad \frac{n_{01}+n_{03}+n_{05}}{n_{01}+n_{02}+n_{03}+n_{04}+n_{05}+n_{06}}, \\ & \hat{\theta}_1 & = \quad \frac{n_{11}+n_{13}+n_{15}}{n_{11}+n_{12}+n_{13}+n_{14}+n_{15}+n_{16}}. \end{split}$$
 Under $H_0: \theta_0 = \theta_1 = \theta$.

 $= n_{01} + n_{02} + n_{03} + n_{04} + n_{05} + n_{06} + n_{11} + n_{12} + n_{13} + n_{14} + n_{15} + n_{16}$

 $n_{01} + n_{03} + n_{05} + n_{11} + n_{13} + n_{15}$

Adjustment > Frequentist Likelihoods

With Validation Data

$$\begin{split} L(r_0,r_1,SN,SP|V^*,V,Y) &\propto & \left\{r_0SN\right\}^{n_{01}}\left\{r_0(1-SN)\right\}^{n_{02}}\left\{(1-r_0)(1-SP)\right\}^{n_{03}}\times \\ & \left\{(1-r_0)SP\right\}^{n_{04}}\left\{r_1SN\right\}^{n_{11}}\left\{r_1(1-SN)\right\}^{n_{12}}\times \\ & \left\{(1-r_1)(1-SP)\right\}^{n_{13}}\left\{(1-r_1)SP\right\}^{n_{14}}\times \\ & \left\{r_0SN+(1-r_0)(1-SP)\right\}^{n_{05}}\times \\ & \left\{1-\left(r_0SN+(1-r_0)(1-SP)\right)\right\}^{n_{06}}\times \\ & \left\{r_1SN+(1-r_1)(1-SP)\right\}^{n_{15}}\times \\ & \left\{1-\left(r_1SN+(1-r_1)(1-SP)\right)\right\}^{n_{16}}. \end{split}$$

No close form MLE available under nondifferential misclassification.

Adjustment > Bayesian Likelihoods

Without Validation Data

$$L(\tilde{\Omega} = \{\theta_0, \theta_1\} | Y_n, Y_u) \propto \prod_{i=0}^{1} \theta_i^{n_{i1} + n_{i3} + n_{i5}} (1 - \theta_i)^{n_{i2} + n_{i4} + n_{i6}}$$

$$= \theta_0^{n_{01} + n_{03} + n_{05}} (1 - \theta_0)^{n_{02} + n_{04} + n_{06}} \times \theta_1^{n_{11} + n_{13} + n_{15}} (1 - \theta_0)^{n_{12} + n_{14} + n_{16}}$$

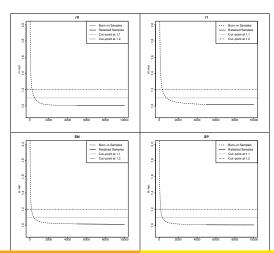
$$\left(\begin{array}{c} \Theta_0 \\ \Theta_1 \end{array} \right) \ \equiv \ \left(\begin{array}{c} \log \frac{\theta_0}{1-\theta_0} \\ \log \frac{\theta_1}{\theta_1} \end{array} \right) \sim \textit{N} \left(\left(\begin{array}{c} \tilde{\mu}_0 \\ \tilde{\mu}_1 \end{array} \right), \left(\begin{array}{cc} \tilde{\sigma}_0^2 & \tilde{\rho} \tilde{\sigma}_0 \tilde{\sigma}_1 \\ \tilde{\rho} \tilde{\sigma}_0 \tilde{\sigma}_1 & \tilde{\sigma}_1^2 \end{array} \right) \right),$$

where Θ_0 , Θ_1 are just the logit transformed versions of θ_0 , θ_1 respectively.

Adjustment > Bayesian Likelihoods

With Validation Data

$$\begin{split} f(Y_n,Y_u|\Omega) &= L(r_0,r_1,SN,SP|Y_n,Y_u) \\ &\propto &\prod_{i=0}^1 \left[r_i^{n_{i1}+n_{i2}+u_{i1}+u_{i2}} \times (1-r_i)^{n_{i3}+n_{i4}+u_{i3}+u_{i4}} \times SN_i^{n_{i1}+u_{i1}} \right. \\ &\times \left. (1-SN_i)^{n_{i2}+u_{i2}} \times (1-SP_i)^{n_{i3}+u_{i3}} \times SP_i^{n_{i4}+u_{i4}} \right]. \end{split}$$


where Π_0 , Π_1 , Γ , Υ are just the logit transformed versions of r_0 , r_1 , SN, SP respectively.

Adjustment > Frequentist and Bayesian Approach

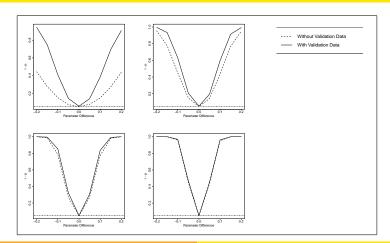
	Without Validation	With Validation	
Parameters in LF	θ_0, θ_1	r ₀ , r ₁ , SN, SP	
Null Hypothesis	$H_0: \theta_0 = \theta_1$	$H_0: r_0=r_1$	
Frequentist Solution	Closed form MLE	Optimization (BFGS)	
> Tool of Comparison	Power Curve (10,000 simulations)		
Bayesian Solution	MCMC (10,000 chain, $\frac{1}{2}$ burn-in)		
> Prior	Normal (hyperparamet	ters selected reasonably)	
> Posterior	Beta (based on form of LF)		
> Tool of Comparison	Proportion of C.I. excluded H_0 value (2,000)		
> Convergence Monitoring	Gelman-Rubin (\hat{R} <	<<1.1 after burn-in)	

Adjustment > Convergence

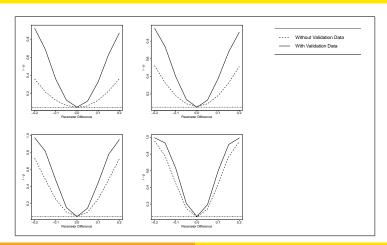
Scenarios under Fixed Cost

Simulation Setup and Results

Factor changed	SN, SP			Tot	al no.	of subj	ects	
Scenarios	Α	В	С	D	Ε	F	G	Н
Validated data	100	100	100	100	100	100	100	100
Unvalidated data	900	900	900	900	100	200	400	900
r_0/r_1	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
SN/SP	0.6	0.7	0.8	0.9	0.7	0.7	0.7	0.7
Factor changed	Exposure Prevalence			Pr	oportio	n of da	ata	


i actor changed	Exposure Frevalence				oportio	ii Oi ua	ala	
Scenarios	1	J	K	L	М	Ν	0	Ρ
Validated data	100	100	100	100	100	250	500	750
Unvalidated data	900	900	900	900	900	750	500	250
r_0/r_1	0.25	0.30	0.35	0.4	0.4	0.4	0.4	0.4
SN/SP	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7

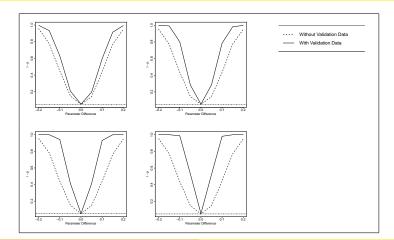
For all the scenarios, both frequentist and Bayesian methods reach to same conclusions. For the next graphs, the only difference is the vertical axis labels.


Simulation Setup and Results > Sensitivity & Specificity

Curves under different sensitivity and specificity values: 0.6, 0.7, 0.8 and 0.9


Simulation Setup and Results > Sample Size

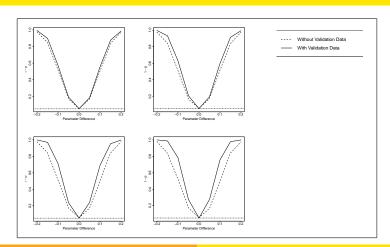
Curves under different sample sizes: 200, 300, 500 and 1000


Simulation Setup and Results > Exposure Prevalence

Curves under different Exposure Prevalence: 0.25, 0.3, 0.35 and 0.4

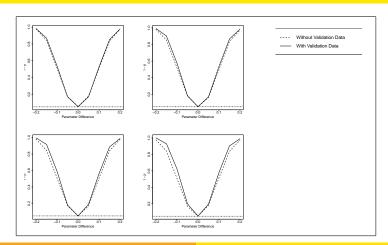
Simulation Setup and Results > Proportion of Data

Curves under different proportions validation and main data: 1:9, 1:3, 1:1 and 3:1

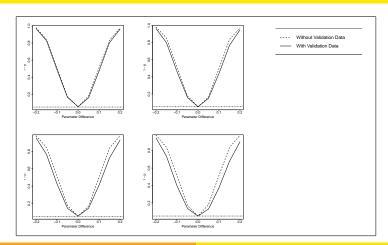


Simulation Setup and Results > Fixed Cost \$1200

Setting	Cost times	Validated	Unvalidated	Cost
	3	50	1050	$3 \times 50 + 1050 = 1200$
A	3	100	900	$3 \times 100 + 900 = 1200$
A	3	200	600	$3 \times 200 + 600 = 1200$
	3	300	300	$3 \times 300 + 300 = 1200$
	5	50	950	$5 \times 50 + 950 = 1200$
В	5	100	700	$5 \times 100 + 700 = 1200$
B	5	150	450	$5 \times 150 + 450 = 1200$
	5	200	200	$5 \times 200 + 200 = 1200$
	10	25	950	$10 \times 25 + 950 = 1200$
	10	50	700	$10 \times 50 + 700 = 1200$
	10	75	450	$10 \times 75 + 450 = 1200$
	10	100	200	$10 \times 100 + 200 = 1200$


Simulation Setup and Results > Fixed Cost \$1200 > A

Validated data 3 times costlier than unvalidated data


Simulation Setup and Results > Fixed Cost \$1200 > B

Validated data 5 times costlier than unvalidated data

Simulation Setup and Results > Fixed Cost \$1200 > C

Validated data 10 times costlier than unvalidated data

HSV-2 Study Data Frequentist Results Bayesian Results

Application

Cervical Cancer and Herpes Simplex Virus Study

Table: Validation sub-study from HSV-2 study

Y	Cases ((Y=1)	Controls	(Y=0)	
Validated Part	$V^* = 1$	$V^* = 0$	$V^* = 1$	$V^* = 0$	
V = 1	18	5	16	16	
<i>V</i> = 0	3	13	11	33	
Unvalidated (main)	375	318	535	701	
Total	396	336	562	750	

HSV-2 Study Data Frequentist Results Bayesian Results

Application > Frequentist Results Cervical Cancer and Herpes Simplex Virus Study

Not considering Validation setting			Considering Validation setting		
Parameters	Estimate	SD	Parameters	Estimate	SD
θ_0	0.428	0.014	<i>r</i> ₀	0.418	0.046
θ_1	0.541	0.018	r_1	0.652	0.053
			SN	0.679	0.041
			SP	0.743	0.043
log(OR)	0.453	0.093	log(OR)	0.958	0.237
P-value	9.966 >	< 10 ⁻⁷	P-value	1.482 ×	10^{-6}

HSV-2 Study Data Frequentist Results Bayesian Results

Application > Bayesian Results Cervical Cancer and Herpes Simplex Virus Study

Not considering Validation setting			Considering Validation setting		
Parameters	Estimate	SD	Parameters	Estimate	SD
θ_0	0.427	0.0138	<i>r</i> ₀	0.385	0.046
θ_1	0.537	0.0181	r_1	0.609	0.052
			SN	0.695	0.0393
			SP	0.731	0.0398
log(OR)	0.445	0.0914	log(OR)	0.917	0.228
95%C.I.	Does not	include	95%C.I.	Does not	include
(OR)	<i>H</i> ₀ ∨	alue	(OR)	H_0 va	alue
	(1.308,	1.867)		(1.664,	3.963)

Summary

Frequentist and Bayesian techniques both yield the same conclusion in the scenarios under consideration.

Scenarios	Without	With
	validation	validation
Less SN / SP		✓
Less Sample Size		✓
Any exposure prevalence rates		✓
Few / More Validation data		✓
Very Costly Validation Data	√	

Motivation
Problem Settings
Frequentist and Bayesian Approach for Adjustment
Simulation Setup and Results
Application to Epidemiologic Data
Summary

Thank You!