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WEB-APPENDIX for “Comparison of 

Statistical Approaches Dealing with 

Immortal Time Bias in Drug Effectiveness 

Studies” 

Mohammad Ehsanul Karim, Paul Gustafson, John Petkau, Helen Tremlett, and the Long-Term Benefits 

and Adverse Effects of Beta-Interferon for Multiple Sclerosis (BeAMS) Study Group 

Web-Appendix 1: Quantification of the Bias from PTDM 

We use the same notations here as defined in the section 2.1. Let T′1 = T1 - TIT = (1 - f) × T1 

denote the person-time under treatment in the ever-treated group. The total person-time 

not under treatment is T′0 = T0 + TIT = r ×T1 + f ×T1 = T1(r + f), where T0 and TIT are contributed 

by the never-treated and ever-treated subjects respectively. Under the assumption of 

constant hazard of failure, the failure rate is calculated by the number of failures divided by 

the corresponding follow-up person-time. Thus, the failure rate ratio obtained from a time-

dependent analysis is (1):  

Karim, M. E.; Gustafson, P.; Petkau, J.; Tremlett, H. and BeAMS study group. (2016) 
"Comparison of Statistical Approaches for Dealing With Immortal Time Bias in Drug Effectiveness Studies". 
American Journal of Epidemiology, 184 (4): 325-335, DOI: 10.1093/aje/kwv445.
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For PTDM, after excluding the observed and assigned immortal times from both groups 

(see Web-Figure 1), the unexposed time under consideration is T′′0 = T0 - T′IT - Tx = T0 - q × TIT 

- x × T1 and the exposed time under consideration is T′1 = T1 - TIT . The failure rate ratio from 

PTDM is calculated as  

 

 

 

 

Web-Figure  1: An illustration of prescription time-distribution matching 
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Comparing RR′′′ with the correct rate ratio RR in equation (A.1) yields:  

 

We see that RR′′′∕RR can be expressed as a function of r, f, x and q.  

The equation (A.2) and Figure 1 show the general pattern of bias and allow general 

statements about the PTDM approach. A stochastic evaluation of the PTDM approach is 

provided in Web-Appendix 3. To take into account additional specific details of a more 

realistic epidemiological setting, such as censoring, different rates of failures, covariates 

under consideration, etc, we carry out simulation studies.   
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Web-Appendix 2: Bias due to Incorrect Handling of Immortal Time 

For the sake of simplicity, many researchers often improperly define the treatment 

exposure. For example, it is popularly assumed that the subjects are on treatment 

immediately after joining a study cohort, when in reality, there may be a delay period to 

initiate treatment for some of the subjects. Not properly accounting for the delay period 

creates an immortal time bias. 

 

2.1 Misclassifying Immortal Time 

Misclassifying the observed immortal time TIT as treated time leads to the failure rate of 

N1∕T1 for the ever-treated subjects, and the failure rate ratio,  
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Web-Figure 2: Risk ratios of PTDM (RR′) method compared to RR of a time-

dependent analysis as a function of the fraction of immortal time f and for 

various ratios r. The bias is the deviation of RR′∕RR from the null value 1. 
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Comparing RR′ with the correct rate ratio RR yields (2) (r and f are defined in Web-

Appendix 1):  

 

Under the assumption of constant hazard, this approach, therefore, always 

underestimates the correct failure rate ratio, thus overestimating (inflating) the treatment 

effect; see Web-Figure 2. We can see a larger downward bias (in RR′∕RR) for increasing 

values of f, the fraction of the immortal person-time in the ever-treated subjects. For 

different ratios r = T0∕T1 (r = 0.25, 0.5, 1, 2, 4, 8), the pattern of RR′∕RR looks similar. The 

higher values of r yield slightly less bias (in RR′∕RR).  

2.2 Excluding Immortal Time 

Exclusion of the immortal time yields the failure rate under treatment of N1∕T′1, and the 

failure rate ratio  

 

Comparing RR′′ to the correct rate ratio RR yields (2):  
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Web-Figure 3: Risk ratios of PTDM (RR′′) method compared to RR of a time-

dependent analysis as a function of the fraction of immortal time f and for 

various ratios r. The bias is the deviation of RR′′∕RR from the null value 1. 

 

As in the previous situation, this approach, therefore, always underestimates the 

correct failure rate ratio, overestimating the effect of treatment; see Web-Figure 3. This 

also shows a downward bias (in RR′′∕RR) for increasing values of f, the fraction of the 

immortal person-time in the ever-treated subjects. However, the bias (in RR′′∕RR) is 
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significantly reduced for the higher values of r, the ratio of the person-times in the never-

treated and ever-treated subjects. If the ever-treated cohort is much smaller than the 

never-treated cohort, the bias from this approach may be negligible, even for large 

fractions of immortal time f. Therefore, use of this approach may be reasonable in some 

settings (3).  
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Web-Appendix 3: Quantification of the Bias from PTDM under Simple 

Distributional Assumptions 

Let S be the time from cohort entry to the treatment initiation, T be the time from cohort 

entry to the study outcome if untreated, and W be the time from treatment initiation to the 

study outcome.  

 

For simplicity, let (S,T,W) be mutually independent, each with exponential distributions, 

with hazard rates γ, λ and η respectively. The time from treatment initiation to study 

outcome for a subject in the treatment group would correspond to a realization from W|S < 

T. Under the independence assumption, W|S < T is exponentially distributed with hazard η. 

Note that, (S,T,W)  are defined as potential outcomes (or counterfactuals or latent 

variables), and we only observe some functions of these variables.  

 

To describe a subject belonging to the control group, consider two independent copies 

of the potential outcomes (S,T,W): (S1,T1,W1) for the subject from the control group and 

(S2,T2,W2) for the treated subject with whom the control subject was matched. In the PTDM 

setting, an untreated subject belongs to the control group if the following conditions are 

met: the untreated subject does not initiate treatment before he reaches the outcome (T1 < 

S1), the matched treated subject initiates treatment before his outcome is observed (S2 < T2), 

and the untreated subject develops his outcome after his matched treated subject initiates 

treatment (S2 < T1). Thus, the time from treatment initiation to study outcome for a control 
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subject is a realization of T1 - S2|T1 < S1,S2 < T2,S2 < T1.  

 

Now, for z > 0, we have  

 

In this probability calculation, we used the fact that for any two independent 

exponential random variables, the distribution of one given it is smaller than the other is 

also exponential, with hazard being the sum of the two individual hazards, i.e., T1|T1 < S1 ~ 

exponential(γ + λ) and S2|S2 < T2 ~ exponential(γ + λ). 

 

Then we obtain:  

 

where the last step follows from the earlier calculation. We see that T1 -S2|T1 < S1,S2 < T2,S2 

< T1 is exponentially distributed with hazard (λ + γ). 
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Based on our assumptions, when a subject initiates treatment, the hazard for the 

outcome changes from λ to η. Then η∕λ is the hazard ratio parameter of interest. But the 

above calculation shows that we will be mistakenly targeting η∕(γ + λ) if we use PTDM 

approach. Therefore, the PTDM approach is shown to be biased in the framework under 

consideration. 

 

As the PTDM approach estimates a lower hazard ratio, the direction of the bias should 

be negative. This phenomenon is observed in all our simulations (see Tables 1-6 and 8). For 

example, let λ = .01 (mimicking the rare event condition in our simulation) and γ = 1∕15 

(mean initiation time of 15 months) yields a predicted bias in the log-HR of - log[(λ + γ)∕λ] 

= -2.04. Similarly, for the more frequent event condition (λ = .10), the predicted bias is = -

0.51. Our simulation studies also take into account of additional covariates and censoring, 

which are not accounted for in this simplistic calculation, but those results indicate that the 

large bias of the PTDM approach seen in Tables 1 and 4 (-1.411  and -0.522 respectively) 

should not be surprising.  
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Web-Appendix 4: Implementing the Sequential Cox Approach 

4.1 Constructing a mini-trial 

 

 

 

Web-Figure 4: An illustration of the sequential Cox approach 

 

To illustrate the method, consider Web-Figure 4, where the follow–up times for 11 

subjects are outlined. Patient 1 was not under treatment when entering the study. This 

individual started taking the treatment in the m = 4th month and was censored during the 

5th month. Similarly subject 5, who was never under treatment was censored during the 

6th month. Now, suppose we want to create the mimicked trial considering the 4th month 
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as the reference interval. We eliminate the subjects who received treatment before the 4th 

month, i.e., the 3rd, 7th and 11th subjects will be discarded. The subjects who started 

treatment after the 4th month are censored at the time of treatment start i.e., the 6th and 

10th subjects are censored at the 5th and 6th months respectively. Under the assumption 

that treatment status remains the same for the entire month, subjects 1, 4 and 9 will be 

considered the treated group and subjects 2, 5, 6, 8 and 10 will be considered the control 

group, for the mimicked trial starting at the beginning of 4th month. In this mimicked trial, 

a subject is either on treatment or off treatment during the entire follow-up. 

 

4.2 Constructing pseudo-data 

Similarly, we can identify the subjects for the treatment and control groups in the 

mimicked mini-trials starting at the beginning of other months. This yields multiple 

mimicked mini-trials, one for each of the time intervals (say, months) of treatment start. 

The intervals in which no subject initiates treatment do not have a corresponding 

mimicked mini-trial. Combining all these mimicked mini-trials (corresponding to all 

months of treatment start), we obtain the pseudo-data.  

 

4.3 Implementation details 

The treatment effect is estimated by fitting a stratified Cox model on the combined data of 

all mini-trials (pseudo-data), stratified by the treatment initiation time. Unlike the original 

implementation of the sequential Cox approach, we did not consider any time-dependent 
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covariates or confounders in our data analyses or simulations. Therefore, we fit the 

stratified Cox model, adjusting for only the baseline confounders.  

4.4 Implementing in R 

The coxph function in the survival package is used to fit the Cox model. In the coxph 

function, the option strata is set to fit a stratified Cox model for the sequential Cox 

approach. Also, the options such as cluster and robust = TRUE are set to obtain the robust 

(sandwich) variance estimate. Aalen’s additive regression model is fitted using the aalen 

function in the timereg package to estimate the IPCWs.  The data can be coded in either 

wide or long form (i.e., time-dependent or counting process formulation of the Cox model).  
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Web-Appendix 5: Survival Data Simulation via a Permutation Algorithm 

In this algorithm, a permutation probability law based on the Cox model partial likelihood 

(4) is used as a basis for performing matching as follows. If a subject with a given set of 

covariates remains at risk until interval m, then the probability of that subject reaching the 

outcome at interval m is proportional to the subject’s current hazard. This algorithm 

simulates survival data following specified distributions of survival time conditional on any 

number of fixed or time-dependent covariates. This algorithm has been validated for 

generating survival times conditional on time-dependent treatment (5) as well as being 

used in several other studies dealing with generating survival data with time-dependent 

covariates (see for example (1, 6, 7, 8, 9)). 

 

The algorithm has following steps:  

1. For each subject i = 1, 2,…,n, we generate the survival time Ti using a specified 

distribution.  

2. For each subject i, we generate the censoring time TiC using a specified distribution.  

3. We find the observed survival time Ti* = min(T i,TiC) and the binary censoring 

indicator Ci = I(Ti ≥ TiC) = 1 if censored and 0 otherwise.  

4. Repeat steps 1-3 n times and sort survival status tuples (Ti*,C i) with respect to Ti* in 

increasing order.  

5. We generate n covariate matrices Xi = (Aim,Li0,Lim) with dimensions (m×p), where the 

m = 0, 1,…,K rows correspond to the different time intervals or visits when 
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measurements are taken and the p columns correspond to the predictor variables, 

including treatment (Am), time-fixed and/or time-varying covariates (L0 and/or Lm). 

For subject i, Xim, the m-th row of Xi, is a vector of variable values at time m.  

6. According to the ordered Ti
* listed in step 3, we begin assigning the survival status 

tuple (Ti
*,C i) to covariate values from Xim as follows. At time Ti

*, variable values 

(treatment and covariate) are sampled with probabilities pim defined below based on 

the Cox model’s partial likelihood:  

 

where ψ is the vector of log-HRs for the corresponding variables and I(j ∈ ri) 

indicates whether a subject is within a given riskset ri for time Ti
*.  

7. The subject i with the covariate values Xim is assigned the observed time Ti*. The 

selected Xim is removed from further calculation. 

The permutation algorithm is implemented in the PermAlgo package in R (10).  
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Additional Simulation Results 

Web-Table  1: Comparison of the analytical approaches to adjust for immortal time bias from 

simulation - I (one baseline covariate and time-dependent treatment exposure) of 1, 000 

datasets, each containing 2, 000 subjects followed for up to 30 time-intervals. Event times 

were generated from a gamma distribution with parameters 1∕0.01 and 0.4 (Simulation - 

V). 

Approach§  Bias(𝜓1̂)  SD(𝜓1̂) 𝑠𝑒(ψ1)̂  CP  MSE(𝜓1̂) 

TD-Cox  -0.001  0.085  0.083  0.942  0.007 

Included IT  -2.350  0.075  0.073  0.000  5.53 

Excluded IT  -1.631  0.070  0.067  0.000  2.665 

PTDM  -1.305  0.097  0.096  0.000  1.711 

Sequential Cox†‡  -0.014  0.109  0.105  0.936  0.012 

TD-Cox, Cox proportional hazards model with time-dependent exposure; PTDM, 

Prescription time distribution matching; IT, Immortal time.  

§ When estimating the treatment effect, the baseline covariate L0 is included in all the 

models under consideration.  

† In the sequential Cox approach, the corresponding IPCW model is fitted using Aalen’s 

additive regression model adjusting for 𝐴𝑡𝑚  and L0 to predict future censoring status.  

‡ Robust (sandwich) estimate is used to obtain the SE. 
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Web-Table  2: Comparison of the analytical approaches to adjust for immortal time bias from 

simulation - I (one baseline covariate and time-dependent treatment exposure) of 1, 000 

datasets, each containing 2, 000 subjects followed for up to 30 time-intervals. Event times 

were generated from a Weibull distribution with parameters 1∕0.01 and 2  (Simulation - 

VI). 

Approach§  Bias(𝜓1̂)  SD(𝜓1̂) 𝑠𝑒(ψ1)̂  CP  MSE(𝜓1̂) 

TD-Cox  0.003  0.239  0.237  0.954  0.057 

Included IT  -2.142  0.221  0.217  0.000  4.636 

Excluded IT  -0.819  0.213  0.212  0.044  0.717 

PTDM  -1.281  0.275  0.274  0.012  1.718 

Sequential Cox†‡  0.013  0.293  0.285  0.942  0.086 

TD-Cox, Cox proportional hazards model with time-dependent exposure; PTDM, 

Prescription time distribution matching; IT, Immortal time.  

§ When estimating the treatment effect, the baseline covariate L0 is included in all the 

models under consideration.  

† In the sequential Cox approach, the corresponding IPCW model is fitted using Aalen’s 

additive regression model adjusting for 𝐴𝑡𝑚  and L0 to predict future censoring status.  

‡ Robust (sandwich) estimate is used to obtain the SE. 
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Web-Appendix 6: Summary of the Selected Cohorts, Selection and Exclusion 

Criteria 

In this study, the eligibility criteria for β-IFN treatment are: patients have to be at least 18 

years old, have an Expanded Disability Status Scale (EDSS; (11)) score of 6.5 or below (i.e., 

able to walk 20 meters without resting with constant bilateral support) and have definite 

MS with a relapsing-onset disease course. In total, 2, 671 patients met the eligibility criteria 

to receive β-IFN treatment between July 1995 and December 2004, as outlined previously 

(12, 13). Follow-up (study end) was to December 2008. 

 

Web-Table 3: Characteristics of the selected cohort of patients with relapsing-

onset multiple sclerosis (MS), British Columbia, Canada (1995-2008). 

Baseline  Ever-β-IFN Never-β-IFN 

characteristics  exposed  unexposed  

Women, n (%)  660 (76.0)  637 (76.8)  

Age, average (SD)  38.1 ( 9.2 )  41.3 ( 10.0 )  

Disease duration, average (SD)  5.8 ( 6.6 )  8.3 ( 8.5 )  

EDSS score, median (range)  2.0 ( 0-6.5 ) 2.0 ( 0-6.5 )  

 

Patients who were exposed to a non-β-IFN immunomodulatory drug, a cytotoxic 

immunosuppressant for MS (n = 172), or were enrolled in a drug-related MS clinical trial (n 

= 21) prior to baseline were excluded from the analysis. If such exposures occurred after 
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baseline, data were censored at the start of the exposure to the non-β-IFN treatment (or 

clinical trial). Further exclusion criteria included unknown MS onset date (n = 10), 

insufficient EDSS measurements (n = 436), reaching of the outcome (n = 218) or the 

secondary progressive stage before the eligibility date (n = 217). Some patients met 

multiple exclusion criteria. As a result, 1, 697 patients were selected and among them, 829 

patients remained untreated during follow-up. A summary of their characteristics are 

reported in Web-Table 3.  
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Application to the Multiple Sclerosis Cohort 

 

 

 

Web-Figure 5: Density (gaussian kernel with bandwidth selected from 

Silverman’s ‘rule of thumb’ (14)) plot of estimated hazard ratios from the 

prescription-time distribution matching (PTDM) method using 1, 000 

different seeds for random sampling of the control subjects to estimate the 

causal effect of β-IFN on time to sustained EDSS 6 for patients with relapsing-

onset multiple sclerosis (MS), British Columbia, Canada (1995-2008). 
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Web-Figure 6: Density plots of the estimated IPC weights from patients with 

relapsing-onset multiple sclerosis (MS), British Columbia, Canada (1995-

2008) in all the reference (treatment initiation) intervals using the sequential 

Cox approach 
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Web-Appendix 7: Specifications for Simulation Inspired by the Multiple 

Sclerosis Cohort 

In this Monte Carlo study, we generated N = 1, 000 datasets each with n = 1, 700 subjects 

followed for up to m = 150 subsequent months. These numbers were selected based on the 

multiple sclerosis data used in this paper. 

 

We assume an exponential distribution for generating failure times T with the constant 

λ0 = 0.01 rate of monthly events throughout the follow-up. A gamma distribution with 

shape 3.5 and rate 0.01 (with mean 35 months) is assumed to generate censoring times TC. 

Treatment initiation time TA is generated from a uniform distribution U(0, 150) (in 

months). To focus on the immortal time issue, we again assumed that there are no 

discontinuations or interruptions for those who initiate treatment. Additionally, we 

consider sex, age, disease duration and EDSS scores as baseline confounders L0 in these 

data. A subject’s sex is generated based on a Bernoulli distribution where the probability of 

being male is 0.3. Age is generated based on a normal distribution with mean 40 and 

standard deviation 10. Disease duration is generated based on a exponential distribution 

with rate 0.14. Baseline EDSS score is generated based on a binomial distribution with size 

10 and probability 0.1. These distributions and corresponding parameters were chosen 

based on the data characteristics outlined in Web-Table 1. 
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After generating values for the survival time Ti, the censoring time Ti
C, and the treatment 

and covariate matrix Xim = (Aim,Li0) for each subject i = 1, 2,…,n for up to m = 150 months, the 

permutation algorithm (15) is used to generate survival data where treatment 𝐴𝑡𝑚  is time-

dependent but the confounder L0 is fixed at baseline value. The effect parameters for 

treatment and sex on the survival outcome are set such that the treatment did not have a 

beneficial effect (a log-HR of ψ1 = 0.25), males are at a lower risk than females (a log-HR of 

ψ2 = -0.2), an older age at baseline are associated with a higher risk (a log-HR of ψ3 = 0.05), a 

shorter disease duration is associated with a lower risk (a log-HR of ψ4 = -0.02) and a 

higher EDSS score at baseline is associated with a higher risk (a log-HR of ψ5 = .5). These 

log-HRs were chosen based on the coefficients from the Cox model fit with the time-

dependent treatment from the multiple sclerosis data (β-IFN: 0.25, sex: -0.22, age: 0.54, 

disease duration: 0.03 and baseline EDSS: -0.019; which are similar to the earlier reported 

coefficients (13)). A summary of the simulated cohort characteristics are reported in Web-

Table 4. Web-Figure 7 shows the barchart of the percentage of cohort cumulatively 

receiving treatment over the follow-up period. 
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Web-Table 4: Characteristics of the simulated cohort of 10, 000 patients. 

Baseline  Ever-β-IFN  Never-β-IFN  

characteristics  exposed  unexposed  

Women, %  0.76  0.76  

Age, average (SD)  39.03 ( 9.86 ) 40.17 ( 9.91 ) 

Disease duration, average (SD)  6.98 ( 7.09 )  6.96 ( 7.01 )  

EDSS score, median (range)  1.0 ( 0-6 )  2.0 ( 0-7 )  
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Web-Figure 7: Barchart of the cumulative percentages of the cohort of 10, 000 

subjects having initiated treatment over the follow-up periods. 
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